Evidence for nine planets in the HD 10180 system

نویسنده

  • M. Tuomi
چکیده

Aims. We re-analyse the HARPS radial velocities of HD 10180 and calculate the probabilities of models with differing numbers of periodic signals in the data. We test the significance of the seven signals, corresponding to seven exoplanets orbiting the star, in the Bayesian framework and perform comparisons of models with up to nine periodicities. Methods. We used posterior samplings and Bayesian model probabilities in our analyses together with suitable prior probability densities and prior model probabilities to extract all significant signals from the data and to receive reliable uncertainties for the orbital parameters of the six, possibly seven, known exoplanets in the system. Results. According to our results, there is evidence for up to nine planets orbiting HD 10180, which would make this star a record holder with more planets in its orbits than there are in the solar system. We revise the uncertainties of the previously reported six planets in the system, verify the existence of the seventh signal, and announce the detection of two additional statistically significant signals in the data. If these are of planetary origin, they would correspond to planets with minimum masses of 5.1+3.1 −3.2 and 1.9 +1.6 −1.8 M⊕ on orbits with 67.55+0.68 −0.88 and 9.655 +0.022 −0.072 day periods (denoted using the 99% credibility intervals), respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Inclination and Habitability of the Hd 10180 System

There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmosph...

متن کامل

Tidal Constraints on the Masses of Extrasolar Planets

Tidal theory predicts that the orbits of close extrasolar giant planets will circularize on timescales that can be comparable to the ages of those systems. Additionally, planets that are close enough and massive enough can spin up their central stars. Since the eccentricities of extrasolar planet orbits are determined by the radial velocity technique and since stellar rotation rates are observe...

متن کامل

Dynamical and Observational Constraints on Additional Planets in Highly Eccentric Planetary Systems

Long time coverage and high radial velocity precision have allowed for the discovery of additional objects in known planetary systems. Many of the extrasolar planets detected have highly eccentric orbits, which raises the question of how likely those systems are to host additional planets. We investigate six systems which contain a very eccentric (e > 0.6) planet: HD 3651, HD 37605, HD 45350, H...

متن کامل

Dynamical Stability of Terrestrial and Giant Planets in the HD 155358 Planetary System

The results of a study of the dynamical evolution and the habitability of the planetary system of HD 155358 are presented. This system is unique in that it is one of the two low metallicity stars discovered to host a multiple planet system. HD 155358 is host to two Jupiter-sized planets, with minimum masses of 0.86 and 0.50 Jupiter-masses. The orbit of the lower mass planet of this system is lo...

متن کامل

The CORALIE survey for southern extra - solar planets . XII . Orbital

This paper summarizes the information gathered for 16 still unpublished exoplanet candidates discovered with the CORALIE echelle spectrograph mounted on the Euler Swiss telescope at La Silla Observatory. Amongst these new candidates, 10 are typical extrasolar Jupiter-like planets on intermediate-or long-Two of these stars are in binary systems. The next 3 candidates are shorter-period planets (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012